
CHAPTER – 3
Data Representation

Introduction :

 We are all well conversant with the decimal

number system as it is used in our daily life.

But in computer system and other digital

system different types of number system were

used like binary, octal, hexadecimal etc.

In this chapter we will study multiplication and

division of binary numbers, floating point

representation and error diction code.

Number System :
 In mathematics a ‘a number system’ is a set of

numbers, (in the broadest sense of word), together
one or more operations, such as addition or
multiplications.

 Number systems are basically of two types.
1) Non Positional

2) Positional

 In this system each symbol represents the same
value irrespective of its position.

 Hence it is difficult to perform different arithmetic
operation with such a number system.

 However in positional number system arithmetic
calculation can be easily performed because in this
system each symbol represents different values
depending on position they occupy in the number.

Number System :

 Following types of number systems are used

commonly:

1) Decimal number system

2) Binary number system

3) Octal number system

4) Hexadecimal number system

1) Decimal number system (base 10)

 This system is used in out daily life. In this

system base is 10, and there are 10 (ten)

characters. 0,1,2,3,4,5,6,7,8,9, more than one

characters are used to show number more

than 9.

 Each position of number is given defining

weight age,

 e.g. 1234= 1000 + 200 + 30 + 4

 = 1*103 + 2 *102 + 3 *101 + 4 * 101

 = 1234.

2) Binary number system (base 2)

 Binary number system is used in computer
and other digital systems.

 In this system there are only two character 0
and 1. These shows two different conditions.

 This two condition can be represented by
SWITCH, PUNCH CARD or TAPE or
TRANSISTOR in cut off.

 For example open switch shows 0 state and
close switch shows 1 state.

 In binary system values increases to the left of
binary point as 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096…

3) Octal number system (base 8)

 In the octal number system base is 8 and

there are 8 character : 0,1,2,3,4,5,6,7.

 In this number system values increase from

right to left as 1, 8, 64, 512, 4096…

 Octal numbers with their equivalent decimal

and binary number are mentioned in given

table.

3) Octal number system (base 8)

Decimal Octal Binary

0 0 000

1 1 001

2 2 010

3 3 011

4 4 100

5 5 101

6 6 110

7 7 111

8 10 1000

4) Hexadecimal number system (base 16)

 This number system is very useful in

microprocessor.

 In this system base is 16. These characters

are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

 In this number system values increase to left

of hexadecimal point as 1, 16, 256, 65536 and

so on.

 Hexadecimal numbers with their decimal as

well as binary and octal is shown.

4) Hexadecimal number system (base 16)

Decimal Hexadecimal Octal Binary

0 0 0 0000

1 1 1 0001

2 2 2 0010

3 3 3 0011

4 4 4 0100

5 5 5 0101

6 6 6 0110

7 7 7 0111

8 8 10 1000

9 9 11 1001

10 A 12 1010

11 B 13 1011

12 C 14 1100

13 D 15 1101

14 E 16 1110

15 F 17 1111

 Rules of Binary addition & subtraction

 For example :

 1 1 1 0 1

+ 0 0 1 0 1

=1 0 0 0 1 0

Number SUM A+B Carry

A B

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 Binary Addition

 Rules of Binary addition & subtraction

 For example :

 1 1 1 0 1

- 0 0 1 0 1

= 1 1 0 0 0

Number SUM A-B Borrow

A B

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

 Binary Subtraction

 Perform the multiplication of

following binary numbers.

 For example :

1) 1 1 0 1 * 1 0 0

 1101

 * 100

 = 110100

 + 00000

 + 0000

 = 110100

 Perform the multiplication of

following binary numbers.

 For example :

2) 1 1 1 1 * 0 1 1

 1111

 * 011

 = 000000

 + 11110

 + 1111

 = 101101

 Perform the multiplication of

following binary numbers.

 For example :

3) 1 0 1 0 . 1 * 1 1 0

 1010.1

 * 1 1 0

 = 1010100

 + 101010

 + 00000

 = 111111.0

 Perform the multiplication of

following binary numbers.

 For example :

4) 1 1 0 * 1 1 0

 110

 * 110

 = 11000

 + 1100

 + 000

 = 100100

 Perform the multiplication of

following binary numbers.

 For example :

5) 1 1 . 10 * 1 1

 11.10

 * 11

 = 11100

 + 1110

 = 1010.10

 Perform Division of following binary

Number.

 For example :

1) 10110 / 10 =1011

2) 10000 / 101=111011

 Floating point representation of a

number:

 In computing floating point is describes a
system for numeric representation in which a
string of a digit (or bits) represent a relational
number.

 It is divide into two parts : which are first part:
signed and second part : mantissa

.

 The term floating point refers to the fact that
the radix point (decimal point or more
commonly in computers, binary point) can
“float”. That is it can be placed anywhere
relative to the significant digits of the number.

 Floating point representation of a

number:

 E.g. Decimal Number : 1234.567

 This representation equivalent to the scientific

notation +0.1234567 * 104

 General form of floating point is : n * ke

 Where n is mantissa, e is exponent while k is

radix. Which is shown in storage layout form.

Fraction Exponent

+0.1234567 +04

 Floating point representation of a

number:

 Storage Layout

 Floating point structure for single and double

precision shown below:

 The following figure shows the layout for

single (32-bit) and double (64 bit) precision

floating point values.

Type Sign Exponent Mantissa Bits Range

Single 1 8 23 32 127

Double 1 11 52 64 1023

 Floating point representation of a

number:

 The sign bit

 It represent sign bit if its value is 1 number is

negative other wise number is positive.

 The Exponent

 The exponent field needs to represent both

positive and negative exponent.

 For example precision exponent range is 8 bit

means -128 to +127. for double precision

range is 11 bit means -1024 to +1023

 Floating point representation of a

number:

 The Mantissa

 The mantissa also known as the significant,

represents the precision bits of the number.

 Normalization :

 A floating point number is said to be

normalized if the most significant digit of the

mantissa is nonzero.

 Similarly in case of binary number

 0.01111 * 24 is non normalized number. And

0.111011 * 25 is normalized.

 In some computers only normalized numbers

are stored.

 The process of shifting of mantissa to the left

to make the most significant bit to be non-zero

is called normalization.

 Fixed Point Representation :

 In a fixed point representation of numbers the
binary or decimal point is assigned to be at
the right or left of the number.

 This method is not widely used.

 Parity Bit

 A parity bit is a bit that is added to ensure that
the number of bits with the value one in a set
of bits is even or odd.

 Parity bits are used as simplest form of error
detection code.

 There are two variants of parity bit :even parity
bit and odd parity bit.

 Error Detection Code :

 Definition of error detection & correction code :

 Error detection: error detection is ability to detect

the presence of errors cause by noise or other

impairments during transmission from the transmitter

to the receiver.

 Error correction: error correction is the additional

ability to reconstruct the original error free data.

 There are two basic ways to design the channel

code and protocol for an error correcting system.

 Error Detection Code :

 Automatic Repeat reQuest : (ARQ)

 The transmitter sends the data and also an error

detection code, which the receiver uses to check for

errors, and requests retransmission of erroneous

data.

 Forward Error Correction : (FEC)

 The transmitter encodes the data with an error

correcting code (ECC) and sends the coded

message.

 The receiver never sends any messages back to the

transmitter.

 All error detection code transmit more bit than

original data.

 Error Detection Code :

 Cyclic Redundancy Check (CRC) :

 More complex error detection and correction

methods make use of the properties of fields and

polynomials (error code) over such fields.

 The cyclic redundancy check consider a block of

data as the coefficients to a error code and then

divides by a fixed, predetermined error code.

 Error Detection Code :

 Hamming distance based checks :

 If we want to detect d bit errors in an n bit word we

can map every n bit word into a bigger n+d+1 bit

word so that the minimum hamming distance

between each valid mapping is d+1.

 Hash function :

 Any hash function can be used as a integrity check.

 Horizontal and Vertical redundancy check :

 Other typed of redundancy check include horizontal

redundancy check, vertical redundancy check, and

double or dual parity used.

