Data Structure Using C

Ch. 01 Algorithm Analysis

Ch.1 Algorithm Analysis

- Topics
 - The analysis of algorithm.
 - Time and space complexities.
 - Asymptotic notation.
 - Classes of algorithm.
 - Big-Oh Notation
 - Big-Omega Notation
- Marks: 5

- To work with a computer we have to use a computer program.
- To write a computer we have to provide step by step command to perform a task.
- What is Algorithm?
 - An algorithm is just a detailed sequence of simple steps that are needed to solve a problem.

- Features of Algorithms:
 - □ Finiteness : (મથા€ित)
 - The algorithm must terminate after the finite steps.
 - □ Definiteness : (ਕਿΩਿત)
 - Each step must be clear.
 - □ Effectiveness : (असरधारधता)
 - Each step must be effective
 - □ Input:
 - There can be zero of more input.
 - Output :
 - There should be at lease one output

- There are three types of Logic structures are possible in ALGORITHM.
 - Sequence Logic.
 - In this logic structure all the instructions are written in order to performed.
 - Decision Logic
 - When more then one option is available then we can use decision logic with.

- Looping Logic :
 - When one or more instructions may be executed several times then we can use looping logic.

Example Of Sequence Logic Algorithm

Write an algorithm to read and print value.

```
Step-1 Input the number
```

Step-2 Print the number

Step-3 Stop

Example Of Decision Logic Algorithm

Write an algorithm to find the maximum number from given two number.

Step-1 Input value of no1 and no2

Step-2 If no1>no2, if yes then print no1 as maximum else no2 as maximum

Step-3 Stop

Example Of Looping Logic Algorithm

Write an algorithm to print 1 to 10 serial number.

```
Step-1
         Input i=1
         Check is i <= 10, if yes then
Step-2
         goto step-3 else goto Step-5
         Print I
Step-3
Step-4 i=i+1, goto Step-2
Setp-5
         Stop
```

Algorithm to goto home by: Taxi
 Step-1 Go to the taxi stand
 Step-2 Get in a Taxi
 Step-3 Give address to taxi driver.

Algorithm to goto home by: Rixo
 Step-1 Go to rixo stand
 Step-2 Get a Rixo
 Step-3 Give address to rixo driver.

- Algorithm to goto home by : Bus
 - Step-1 Go to the City Bus Stand
 - Step-2 Get a Bus number 7
 - Step-3 Get off on Trikon bag
 - Setp-4 Walk two street north to my home
 - All of these algorithms accomplish exactly the same goal, but each algorithm does it in completely different way.
 - All above algorithm has different cost and travel time.
 - Taxi will fastest way but costly too.
 - Bus will less expensive but lot slower.

- In computer science, the analysis of algorithms is the determination of the number of resources necessary to execute them.
- Most algorithms are designed to work with inputs of undefined length.
- Algorithm analysis is an important part of a wide computational complexity theory which provides theoretical estimates for the resources needed by any algorithm which solves a given computational problem.

- Cost Models of Algorithm Analysis:
 - Two cost models are generally used to algorithm analysis.
 - Uniform cost model
 - Logarithmic cost model

- Uniform cost model
 - The uniform cost model is also called as uniform-cost measurement.
 - ા It assigns a constant cost to every machine operation regardless (ધ્યાન આપ્યા વિના) of the size of the numbers involved.

- Logarithmic cost model
 - The logarithmic cost model is also called as logarithmic-cost measurement.
 - ા It assigns a cost to every machine operation proportional (પ્રમાણસરનું) to the number of bits involved.

TIME Complexity

- A program executes number of instructions during the execution time is called as its **Time Complexity**.
- The time complexity of an algorithm is commonly expressed using big O notation, which excludes coefficients (ગુણક સંખ્યા) and lower order terms.

Space Complexity

- Space Complexity of an algorithm is total space taken by the algorithm with respect to the input size.
- Space complexity includes both Auxiliary (સફાયક) space and space used by input.

Asymptotic Notations (અનંત સ્પર્શી સંકેતલિપી)

- **Asymptotic Notation** is often used to describe how the size of the input data affects an algorithm's usage of computational(ગણતરીના) resources.
- In order to choose the best algorithm for a particular task, we need to be able to judge how long a particular solution will take time to run a program.

Type & Classes of Algorithms

- There are most used algorithms are as given.
 - Simple recursive algorithms
 - Backtracking algorithms
 - Divide-and-conquer algorithms
 - Dynamic programming algorithms
 - Greedy algorithms
 - Branch-and-bound algorithm
 - Brute force algorithms

Simple recursive algorithms:

- A simple recursive algorithm can,
 - Solve the base cases directly
 - Recurs with a simpler sub-problem
 - Does some extra work to convert the solution to the simpler sub-problem.

Simple recursive algorithms:

- Example
 - To count the number of elements in a list,
 - If the list is empty, return zero; otherwise
 - Step past the first element, and count the remaining elements in the list.
 - Add one to the result

Backtracking Algorithms

- A backtracking algorithm is based on a depth-first recursive search.
 - Tests to see if a solution has been found, returns it; otherwise
 - For each choice that can be made at this point,
 - Make that Choice
 - Recur
 - If the recursion returns a solution, return it
 - If no choices remain, return failure

Divide and Conquer Algorithms:

- A divide and conquer algorithm consists of two parts.
 - Divide the problem into smaller subproblems of the same type and solve these sub-problems recursively
 - Combine the solutions to the subproblems into a solution to the original problem
- Traditionally, an algorithm is only called divide-and-conquer if it contains two or more recursive calls.

Dynamic programming algorithms

- A dynamic programming algorithm remembers past results and uses them to find new results.
- Dynamic programming in generally used for optimization problems in which
 - Multiple solutions exist, and need to find the best one.
 - Requires optimal substructure and overlapping sub-problem.

Dynamic programming algorithms

- Optimal substructure :Optimal solution contains optimal solutions to subproblems
- Overlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up fashion

Greedy Algorithms:

- A greedy algorithm sometimes works well for optimization(સારા પરિણામ) problems.
- A greedy algorithm works in phases.
 - □ You take the best you can get right now, without regard for future consequences(પરિણામ).
 - u You hope that by choosing a local optimum(વધુ અનુકૂળ પરિસ્થિતિ) at each step, you will end up at a global optimum.

Branch-and-bound algorithms:

- Branch-and-bound algorithms are generally used for optimization problems.
- As the algorithm progresses, a tree of sub-problems is formed.
- The original problem is considered the root problem.
- A method is used to construct an upper and lower bound for a given problem.

Brute force algorithms:

- A brute force algorithm simply tries all possibilities until a satisfactory solution is found.
- Such an algorithm can be
 - Optimizing: Find the best solution.
 - This may require finding all solutions, or if a value for the best solution is known, it may stop when any best solution is found.
 - Satisfying: Stop as soon as a solution is found that is good enough.

Big OH Notations

- Big OH notation also called Landau's symbol, is a symbolism used in complexity theory, computer science, and mathematics to describe the asymptotic (અનંત સ્પર્શક) behavior of functions.
- Basically, it tells you how fast a function grows or declines(ધટવું).

Big OH Notations

- Landau's symbol comes from the name of the German number theoretician Edmund Landau who invented the notation.
- The letter O is used because the rate of growth of a function is also called its order.

Big OMEGA Notation

- To describe lower bounds we use the bigomega notations.
 - f(n)=O(g(n)) usually defined by saying for some constant c>0 and all large enough.

Habituate

- What is Algorithm?
 - An algorithm is just a detailed sequence of simple steps that are needed to solve a problem.
- Features of Algorithms:
 - ם Finiteness : (મર્યાદિત)
 - □ Definiteness : (નિશ્ચિત)
 - □ Effectiveness : (અસરકારકતા)
 - Input
 - Output
- Algorithms Logics :
 - Sequence Logic
 - Decision Logic
 - Looping Logic

Habituate

- Analysis of algorithms
 - Analysis of algorithms is the determination of the number of resources necessary to execute them.
- Cost Models of Algorithm Analysis :
 - 1. Uniform cost model 2. Logarithmic cost model
- Time Complexity
 - A program executes number of instructions during the execution time is called Time Complexity.
- Space Complexity
 - Total space taken by an algorithm with respect to the input size is called Space Complexity.
- Asymptotic Notation
 - Asymptotic Notation is used to describe how the size of the input data affects an algorithm's usage.

Habituate

- Type & Classes of Algorithms
 - Simple recursive algorithms
 - Backtracking algorithms
 - Divide-and-conquer algorithms
 - Dynamic programming algorithms
 - Greedy algorithms
 - Branch-and-bound algorithm
 - Brute force algorithms
- Big OH notation
 - Dig OH notation is a symbolism used in complexity theory, computer science, and mathematics to describe the asymptotic (અનંત સ્પર્શક) behavior of functions.