
Ch – 3

Exception Handling,

Threading &

Streams

Concept of Exception Handling

Actually, an exception is an object of an exception
class. So when an exception arises, an object of
that exception class is created and thrown. Then it
is caught and processed.

In Java, Exception Handling is done using five
keywords : try, catch, throw, throws and finally.

The general use of these keywords is explained
here :

Try: Try is a block. The statements that can
generate an exception are replaced in the try
block.

Concept of Exception Handling

Catch : If an exception is generated in the try
block, then its object is created and thrown. This
object is caught in the catch block and is handled.

Throw : Normally, the exceptions are generated
by some statement. But to manually create and
throw an exception object, throw keyword is used.

Throws : When a method can generate an
exception, this method is specified by throws
keyword.

Finally : Finally is a block. The statements written
in finally block are executed mandatorily whether
the exception is caught or not.

Types of Exceptions

The super class of all Exception class is
Throwable class. Error and exception are two
subclass of throwable class.

The exception class has subclass that our
program can catch. This class also used o
create our own exception.

There are two subclass of Exception class :
(1) RuntimeException and (2) IOException.

Use try and catch to handle exception

Class ExceptionEx{

 public static void main(String arg[]){

 int arr[]={23,43,45};

 try {

 System.out.println(“trying to access 26th
element”);

 System.out.println(“arr[25]=”+arr[26]); // array
index out of bound limits

 }

 catch(ArrayImdexOutOfBoundsException e){

 System.out.println(“Array index is out of
bounds”);

} }

Nesting of try blocks and catch:

class nested_try_demo

{

 public static void main(String arsg[])

 {

 int a=0,b;

 try

 {

 a=10/args.length; // generate divide by zero if no
command line argument is givenz

 System.out.println("A="+a);

 try

 {

 b=Integer.parseInt(args[1]);

 System.out.println("B="+b);

 a=12/0; // generate arithmetic Exception

 }

 catch(ArrayIndexOutOfBoundsException ae)

 {

 System.out.println("Array index out of limits");

 }

 }

 catch(ArithmeticException ae)

 {

 System.out.println("Divide by zero exception");

 }

 }

}

Throw keyword :

We can throw an exception manually by throw

keyword.

Syntax : throw obj;

Here the obj can be object of throwable class or

any subclass of throwable class.

Using throw keyword one can explicitly throw

any exception.

You can create object of any throwable class or

subclass using new keyword or you can use the

object specified in catch block.

Throw keyword :

1) throw new ExceptionType();

 Here ExceptionType() is the constructor of

the exceptionType class.

 You can pass a String type argument

describing the exception to this constructor.

 This message is displayed when you print

the exception or you can use getMessage()

method that returns this description.

 Ex. throw new

ArithmeticException(“Divide by Zero”);

Throw keyword :

2) catch(ArithmeticException ae)

{

 throw ae;

}

 In first case the throw statement must be

put in try block and caught in catch block.

 While in second case the exception is

caught in catch block and it is thrown again.

Throw keyword :

 Ex. WAP for exception handling using

throw keyword.

class throw_demo

{

 public static void main(String args[])

 {

 System.out.println(“Throwing

exception explicitly”);

Throw keyword :

try

{

 throw new ArithmeticException(“Divide
by zero”);

 }

 catch(ArithmeticException ae)

 {

 System.out.println(“Exception is:”+ae);

 }

}

Throw keyword :
WAP for exception handling to display that exception is

caught again.

class throw_demo2

{

 static void Mtmethod()

 {

 throw new ClassCastException();

 }

 catch(ClassCastException cc)

 {

 System.out.println(“Exception is:”+cc);

 throw cc;

 }

}

Throw keyword :
 public static void main(String args[])

 {

 System.out.println(“Throwing Exception Excplicitly”);

 try

 {

 Mymethod();

 }

 catch(ClassCastException cc) // catching an exception
thrown by Mymethod().

 {

 System.out.println(“Again caught:”+cc);

 }

 }

}

Throws keyword :

 Throws keyword is used to specify that a

method can throw an exception that it

does not handle.

 At a time, method definition you can do

this by throws keyword.

 After throws keyword specify the

exception class that it can throw.

Throws keyword :
 WAP for exception handling using throws

keyword.

class test

{

 void testMethod() throws
ClassNotFoundException

 {

 throw new ClassNotFoundException(“Class
not found”);

 }

}

Throws keyword :
class throw_demo

{

 public static void main(String args[])

 {

 testclass t=new testclass();

 t.testMethod();

 }

 catch(ClassNotFoundException e)

 {

 System.out.println(“Exception :”+e);

 }

 }

}

Finally :

 Finally is a block which executes compulsorily. In

some case, when an exception is occurred the

program may omit some of the statements

because its execution flow might be changed.

 Finally block is generally written after try-catch

block and it is executed no matter an exception is

caught by a catch block or not. The finally block

is optional but a try block must have a catch or a

finally block.

Creating our own exception class

 We create our own exception class by extending

the Exception class which is the super class of

exception class.

 The following example of Custom exception :

Import java.util.*;

Classs ownException extends Exception {

 boolean state;

 ownExcdeption(boolean state) {

 this.state=state; }

Public string toString() {

 return “ownException occurred with”+state;

}

Class customEx {

 static void test(boolean state) throwable

ownException

 {

 if(state==false)

 throw.new ownException(state);

 else

 system.out.println(“no exception”);

}

Public static void main(String args[]) {

 boolean state;

 try {

 Random r=new Random();

 state=r.nextBoolean();

 test(state);

 }

 catch(ownException e)

 {

 system.out.println(”Exception”+e);}

 }

}

Basic introduction

A thread is simply a light-weight process or you
can say it is a sub process or child of a process.

Multitasking can be achieved by two different
ways: Process-based and Thread-based
multitasking.

In a process-based multitasking there are
multiple programs running simultaneously. For
example, you are running your program and at
the same time you are listen to music. This is
called process-based multitasking.

Basic introduction

While a thread-based multitasking there are
multiple threads running simultaneously.

For example, in a web browser you are
downloading a file from the server and at the
same time you are also surfing the Internet.
This is called thread-based multitasking.

Java Thread Model

Java support multiple threads to run
concurrently which is known as multithreading.
This is far more advantageous than single
thread system.

In single threaded system a thread runs for
indefinite time. While a thread is running, it may
fore some event and wait for signal. So
between two events, it stops for some time.
This is called CPU cycle. Thus the time for
these CPU cycle are wasted.

Java Thread Model

But if we have multiple threads, then if a thread
holds for some interval of time, other threads
are running, so the wasted CPU cycle time can
be eliminated.

Thread Life Cycle

Every thread has a life cycle. As a thread is
created, it may pass through the following
states :

1. Initial state

2. Runnable state

3. Running state

4. Blocked state

5. Dead state

Thread Life Cycle

1) Initial state : When you create an object of
thread, a thread is created and it is said to be in
initial or newborn state.

As this stage, a thread does nothing but it can
go to either runnable state or dead state.

2) Runnable state : Runnable state means the
thread is ready to run but is not running. From
the runnable state, a thread can go to running
state.

Thread Life Cycle

3) Running state : A thread is said to be in
running state, when it is given the processor
execute is process. At this stage, it runs its
run() method and executes until release its
control by yield() method.

4) Blocked state : When a thread is not in the
queue and is totally idle, it is said to be in
blocked state. It can be sent into the blocked
state by suspend(), wait() or sleep() method. A
thread in the blocked state is not running but it
is not dead because it can run again.

Thread Life Cycle

5) Dead state : When a thread completes its
execution i.e. its run() method, its life ends and
is said to be dead. When a thread finishes its
execution and it is called natural death.

Some basic thread methods

1] final String getName() :

 Returns the name of the thread.

2] final void setName() :

Sets the name of the thread to the specified
name.

3] static Thread currentThread() :

Returns a reference to the invoking thread
object.

Following Example shows these methods :

Class ThreadEx

{ public static void main(String args[])

 {

 Thread t=Thread.currentThread();

 System.out.println(“The thread is”+t);

 System.out.println(“Name of thread
 is”+t.getName());

 t.setName(“MyThread”);

 System.out.println(“Now the name of thread
 is”+t.hgetName());

 }

}

Creating Threads

There are two ways in java to create a
thread :

1. By extending the Thread class.

2. By implementing Runnable interface.

[1] Extending Thread class :

The Thread class is in the java.lang package
which is the default package. The thread
class has run() method. After extending the
Thread class, you have to override the run()
method.

Creating Threads

The Thread class has following
constructors :

Thread()

Thread(String name)

Thread(Runnable object)

Thread(Runnable object, String name)

Creating Threads

[2] Implementing Runnable Interface :

The second way of creating thread is
implementing the Runnable interface. The
runnable interface has only one method,
which is the run() method. So to implement
the Runnable interface you have to define the
run() method.

Now to create a thread object, you have to
use the following constructor :

Thread(Runnable object, String name)

Multiple Threads

You can use more thread in single program
then create multiple thread. Because java’s
strength also lies in multithreading. So in
example we will create multiple threads :

Class MyThread implements Runnable

{ Thread t;

 String name;

 MyThread(String name)

 {this.name=name;

 t=new Thread(this.name);

 System.out.println(“The thread created”+t);}

Multiple Threads

t.start(); }

Public void run()

{ for(int i=1;i<6;i++)

 { System.out.println(“Thread”+name”:”+i);

 try

 { Thread.sleep(400); }

 catch(InterruptedException e) {

 Syetem.out.println(“Thread”+name+”Comple
 ted”); } }

 System.out.println(“Thread”+name+”Cmplt”);

} }

Multiple Threads

Class MultiThreadEx{

Public static void main(String args[]) {

 MyThread t=new MyThread(“First”);

 new MyThread(“Second”);

 try {

 Thread.sleep(2500);

 System.out.println(“main thread completed
 its ececution”); }

 catch(InterruptedException e) {

 System.out.println(“Main Thread intrrupted”);

} } }

The isAlive() and join() methods

Every time we can not know that after how
many milliseconds the child threads will
complete their execution. So java has two
useful methods for it : isAlive() and join().

The isAlive() method is used to know whether
a thread is running or not. It returns true if the
thread is still running else it returns false.

Its syntax is :

Final boolean isAlive()

The isAlive() and join() methods

The join() method is used to joins the thread
which is running currently. Means it will not
finish its execution until the thread on which it is
called, completes its execution.

Its syntax is :

Final void join() throws InterruptedException

Thread Priorities

Each thread has its priority which is used for
scheduling by the processor. These priorities its
precedence over other threads.

The thread priority can be obtained or set by
the following methods :

Final void setPriority(int priority)

The setPriority() method is used to set the
priority of thread. The parameter priority is an
int value from 1 to 10 . 1 is the lowest priority
and 10 is the height priority.

Thread Priorities

The getPriority() method returns the priority of
the invoking thread object.

Final void getPriority()

The thread class has following int constants
for thread priorities. These variable are static
and final.

NORM_PRIORITY : The default priority is 5

MIN_PRIORITY : The minimum priority which
is 1.

MAX_PRIORITY : The maximum priority
which is 10.

Synchronization

When more than one threads attempt to use a
thread resource, a phenomenon occurs which
is known as race condition. This race condition
must be avoided because when two or more
threads access a shared resources such as a
file. This may lead to unexpected results.
Therefore the synchronization is necessary.

The synchronization ensures that only one
thread will access a shared resource and after
the completion of its execution the resource will
be unlocked.The synchronization is done by the
synchronized keyword.

Deadlock

When two threads have circular dependency on
objects a major problem arises. This type of
error is known as ‘deadlock’.

In deadlock, one thread is waiting for other
thread and the other thread is waiting for first
thread.

Thus, both threads go in waiting(blocked) state
and can not continue their execution.

Basic Introduction

This chapter introduces the java.io package
and its various classes and methods. These
classes are used to handle the input and
output related tasks. First of all we will see
the file class and then we will discuss about
streams.

1. The file class

The file class is used to get the information of a
file, such as the length of file, its permissions,
directory path etc. you can also create a
directory, delete a file and directory using the
file class.

The file class has many useful methods and
constants that can be used to get such kind of
information about a file.

The file class has following constructors:

1) File(String path)

1. The file class

 File(String directoryPath, String filename)

 File(File obj, String filename)

 The first form has one parameter that is the
path to a file or directory.

The second form has two parameters. These
are the path to a directory and the name of a file
in that directory.

The last form also has two parameters. These
are a File object for a directory and the name of
a file in that directory.

1. The file class

The methods defined by the File class are
given below :

1) String getName() :

Returns the name of the file.

2) String getParent() :

Returns the name of the parent directory
of the file.

3) String getPath() :

Returns the path of the file.

1. The file class

4) Boolean canRead() :

Returns true if the file exists and can be
read. Otherwise, returns false.

5) Boolean canWrite() :

Returns true if the file exists and can be
written. Otherwise, returns false.

6) Boolean delete() :

Deletes the file. Returns true if the file is
successfully deleted. Otherwise, returns
false.

1. The file class

The file class has following two
constants :

(1) sepratorChar(\) : It is the seprator
character that seprates the directory
names.

(2) pathSepratorChar(;) : It is the
seprator character that septrates the
paths.

2. Streams

A stream is a part or a medium along which
the data passes through streams from source
to destination.

The source is called the input and the
destination is called the output of the
program.

The example of input stream can be a
keyboard, a mouse, a file, a memory buffer
etc. and the output can be a monitor screen,
a pointer, a file etc.

2. Streams

There are two types of streams:

(1) character Streams

(2) byte Streams

(1) Character Streams :

The character stream classes
manipulate data as character. A
character in java is of 16-bits. Thus the
character stream classes can work with
16-bit Unicode characters. The main two
classes of character stream are Reader
and Writer.

2. Streams

(2) Byte Streams :

The Byte stream classes manipulate
data byte by byte. A byte in Java is 8-
bits. Thus a byte stream object reads or
writes data value in binary form. The
main two classes of byte stream are
InputStream and OutputStream.

1. Character Streams Classes:
 The character stream classes are Reader

and Writer. The classes of character
streams are classified as follow:

2.1 Reader

The reader class is an abstract class so we
can not create its object. Its subclass are
used to read characters from a file. The
methods of Reader class are as follow :

1) Void close() :Closes the input stream.
Further read attempts generate an
IOException. Must be implemented by a
subclass.

2) Int read() : Reads a character from the
stream. Waits until data is available.

3) Boolean ready(): Returns true if the
next read() will not wait.

4) Void reset() : Resets the input pointer
to the previously set mark.

5) Void mark(int numChars) :Places a
mark at the current point in the input stream
that will remain valid until numChars
characters are read.

6) Int skip(long numChars) : Skips over
numChars bytes of input returning the
number of characters actually skipped.

2.1.1 InputStreamReader Class

This class is a subclass of the Reader class. It
reads a byte from the input stream i.e. A file
and converts it to the character. Its constructor
are :

[1] InputStreamReader(InputSytream obj):

Here, obje is the object of the
InputStream which is the input stream
class of byte stream.

The InputStream is an abstract class, so
we have to use any concrete subclass
object as parameter.

2.1.2 FileReader

The file reader class is a subclass of
InputStreamReader class and inputs
characters from a file.

Its most common constructor are :

FileReader(string filepath)

FileReader(File object)

2.2 Writer

The writer streams are used to perform all
output operations on files. The writer class
is an abstract class which acts as a base
class for all the other writer stream
classes.

Its constructor are :

Writer()

Writer(Object obj)

Its Methods are :

1) Void close() : Closes the output stream.

2) Void flush() : Writes any buffered data
to the physical device represented by that
stream.

3) Void write(int c) : Writes the lower 16
bits of c to the stream.

4) Void write(char buffer[]) :Writes the
characters in buffer to the stream.

5) Void write(char buffer[], int index, int
size) : Writes size characters form buffer
starting at position index to the stream.

2.2.1 OutputStreamWriter class

This class is a subclass of Writer class.

It converts a stream of characters to a
stream of bytes.

Its constructors are like this:

OutputStreamWriter(OutputStream os)

Here, os is the output stream and
encoding is the name of a character
encoding.

2.2.2 FileWriter class

The FileWriter class is used to write
characters in a file.

Its constructor are :

1) FileWriter(String filepath) : The path
specifies the path of the file to be writen.

2) FileWriter(File obj) : The obj is object
of file class.

3) FileWriter(String filepath, Boolean
append) : If the second constructor append
is true, the file will be opened in append
mode.

2.2.3 BufferWriter class

The BufferWriter class is a subclass of Writer.
The BufferWriter class extends Writer and
buffers output to a character stream.

Its constructors are as follows:

1) BufferedWriter(Writer w) : The w is
object of a subclass of Writer class.

2) BufferedWriter(Writer w, int bufSize) :
here you specify the size.

2.2.4 PrintWriter class

The printWriter class is used to display values
of simple data type. It has method to print data
such as print() and println(). In these methods
java calls toString() method to convert data
type to a simple data type.

 Its constructor are :

1) PrintWriter(Writer obj) : The obj is an
object of Writer class.

2) PrintWriter(OutputStream obj) :The
obj is an object of OutputStream’s subclass.

3 Byte Stream class

The byte stream class are InputStream and
OutStream. The classes of byte streams are
classified as follows:

3.1 InputStream

The InputStream is an abstract class of byte
stream.

The methods provided by the InputStream
class are:

1) Int available() : Returns the number of
bytes currently available for reading.

2) Void close() : Closes the input stream.

3) Void mark(int numBytes) :Places a
mark at the current point in the input stream.
It remains valid until numBytes are read.

3.1 InputStream

4) Int read() : Reads one byte form the
input stream.

5) Void reset() : Resets the input pointer to
the previously set mark.

6) Int skip(long numBytes) : Skips
numBytes of input. Returns the number of
bytes actually skipped.

3.1.1 FileInputStream

The FileInputStream class is used to create
an InputStream obj file that is used to read
byte from a file.

Its constructor are :

1) FileInputStream(String filepath) : The
filepath is path of file to be read.

2) FileInputStream(File fileObj) : The
fileObj is object of file class.

3.1.2 FilterInputStream

The FilterInputStream is subclass of
InputStream that offers some more
functionality than other InputStream class.

Its constructor are :

FilterInputStream(InputStream obj) : The
obj is the object of InputStream subclass.

3.1.3 BufferedInputStream

The BufferedInputStream class is a subclass
of FilterdInputStream and is used to read
bytes from input stream using buffer.

Its constructor are :

1) BufferedInputStrem(InputStream obj)
: The obj is the object of InputStream
subclass. The default buffer size is used.

2) BufferedInputStream(InputStream
obj, int bufferSize) : The buffer size can be
specified by buffersize.

3.1.4 DataInputStream

The DataInputStream class is a subclass of
FilterInputStream class. This class allow
reading of Java’s standard data type value.

Its constructor are :

1) DataInputStream(InputStream obj) :
Here obj is the object of an InputStream
subclass.

Its methods are :

1) boolean readBoolean() : It reads a
boolean object of an InputStream subclass.

2) byte readByte() : It reads byte value
from the input and it returns it.

3) char readChar()

4) int readInt()

5) long readLong()

6) Short readShort()

7) float readFloat()

8) double readDouble()

9) String readUTF() :It reads a string value
from the input stream and returns it. The
character are converted from UTF-8 to
Unicode (16-bit) format.

3.1.5 ObjectInputStream
The ObjectInputStream is a subclass of

InputStream and it implement the
objectInterface interface. This class is used to
read object from the input stream.

Its constructor are :

1) ObjectInputStream(InputStream obj) :
Here obj is the object of an InputStream.

Its methods are :

1)final Object readObject() : This method
is read object from the input stream. This
method is final, so can’t be overriden.

4. ObjectOutputStream
The ObjectOutputStream class is discussed

here to maintain continuty. It is a subclass of
OutputStream and it implements the
ObjectOutput interface.

Its constructor are:

ObjectOutputStream(OutputStream obj)
: Here, the obj is an object of any
OutputStream.

Its method are:

Void writeObject(Object obj) : It writes
the object obj to the output stream.

4.1 OutputStream
The OutputStream class is an abstract class

that is used to output bytes in an output
stream.

The Methods of OutputStream class are
listed below :

1) void write(int byte) : It writes a single
byte in the output stream.

2) void write(byte buffer[]) : It writes
the contents of byte array buffer to the
output stream.

3) void close()

4) void flush()

4.1.1 FileOutputStream

The FileOutputStream class is a subclass of
the OutputStream class. Its used to write byte
to a file.

The constructor are :

1) FileOutputStream(File obj)

2) FileOutputStream(String path)

3) FileOutputStream(String path,boolean
append)

4.1.2 FilterOutputStream

The FilterOutputStream class is a subclass of
OutputStream class. It offers some extended
level of functionality with compared to the other
output stream class. It is an abstract class and
its three subclass are BuffedOutputStream,
DataOutputStream and PrintStream classees.

The constructor are :

1) FilterOutputStream(OutputStream
obj) : The obj is an object of an output
stream class.

4.1.3 BufferedOutputStream
The BufferedOutputStream class is a subclass of

FilterOutputStream and is used to output byte to
a file using buffer.

The constructor are :

1) BufferedOutputStream(OutputStream
obj) : The obj is an object of an subclass of
OutputStream. The default buffer size is
used.

2) BufferedOutputStream(OutputStream
obj, int bufferSize) : The size of buffer is
specifed by the bufferSize parameter.

4.2.4 DataOutputStream

The DataOutputStream class is a subclass of
FilterOutputStream. It is used to write Java’s
standard data type values. It implements
DataOutput interface.

The constructor are :

1) DataOutputStream (OutputStream
obj) : The obj is an object of a subclass
of OutputStream class.

The methods are :

1) void write(int i)

2) void writeChars(String str)

3) void writeDouble(double d)

4) void writeFloat(float f)

5) void writeBoolean(boolean b)

6) void writeShort(short s)

7) void writeLong(long l)

4.2.5 PrintStream

The PrintStream class is a subclass of
FilterOutputStream class. It is used to print data
as we do using print() and println() methods of
System.out. This class also supports these
methods.

The constructor are :

1) PrintStream(OutputStream obj) : The
obj is an object of any OutputStream class.

2) PrintStream(OutputStream obj, boolean
flushOnNewLine) : If the flushOnNewLine is
true,the output stream is automatically gets
flushed when a new line character.

5. Other java.io calsses

 RandomAccessFile :

The RandomAccessFile class is used to read
or write data from a file randomaly. This class
is not a subclass of InputStream or
OutputStream but it is directly the subclass of
Object class. This class implements DataInput
and DataOutput interfaces.

Other java.io classes have sequential access
to a file. But the RandomAccessFile can read
or write from to any location of a file.

The constructor are :

1) RandomAccessFile(File obj,String mode)

2) RandomAccessFile(String filenm,String
mode)

The methods are :

1) void seek(long numOfBytes) : It
positions the file pointer after the
numOfBytes bytes.

2) int read() : It reads and returns a byte
from the input stream.

3) long length() : It reaturns the length of
the file in byte.

4) long setLength() : It sets the length of
file.

5) int skipBytes(int numOfByte) : It
ignores the numOfBytes bytes. It
numOfBytes is less or qual to zero, no bytes
are skipped.

6) void close() : It close the file.

6. StreamTokenizer class

The StreamTokenizer class is used to
separate token from an input stream. A token
may be a word, a character or a number.

This can be used to make a compilers or
parser or a similar program that needs to
process token.

A constructor for this class is as follows:

StreamTokenizer(Reader obj) : The obj is
an object of Reader’s subclass.

There are some constants of StreamTokenizer

1) ttype: It is used to check token type. i.e. A
word, a number etc.

2) TT_EOF : It inndicates end-of-file.

3) TT_EOL : It indicated end-of-line.

4) TT_NUMBER : If the token is a number,
ttype equals TT_NUMBER.

5) TT_WORD : IF the token is a word, ttype
equal to TT_WORD.

There are some methods of StreamTokenizer
:

1) void eollsSignificant(boolean flag): If
the flag is true, the end-of-line is considered
as a tken, else is cinsidered as a white space.

2) int lineno() : It returns the current line
number.

3) int nextToken() : It returns the type of the
next token.

4) String toString(): It Converts and the
token into string and returns it.

5) void resetSyntax(): If specifies that all
characters should be considered as normal
caharacter.

6) void ondinaryChar(int ch): If specifies
that ch should be treated as normal
caharacter.

7) void wordChars(int start, int end) : The
characters whose ASCII values come
between the range start and end are treated
as word characters.

