
Advanced C & DS

Ch. 02 Sorting And Searching

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Chapter : 3 [Syllabus]

 Sorting and Searching

 Bubble sorting

 Insertion sorting

 Quick sorting

 Bucket sorting

 Merge sorting

 Selection sorting

 Shell sorting

 Basic searching technique

 Index searching

 Sequential searching

 Binary searching

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Introduction of sorting

 Sorting is an algorithm that put elements of

list in a certain order.

 Efficient sorting is important to improve the

use of other algorithms that required sorted

list to work correctly.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Sorting Algorithm

 We can use various sorting algorithm as

given.

 Bubble Sort

 Insertion Sort

 Selection Sort

 Quick Sort

 Merge Sort

 Bucket Sort

 Shell Sort

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Bubble Sort

 This sorting method is based on comparing

and exchanging pairs of adjacent elements

in array.

 One round of scanning through the set of

elements of any array is called as passing

elements.

 The bubble sort method derives it name

from the fact that smallest data item

bubbles up to the top of an array of n

elements.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Bubble Sort

 The algorithm begins by comparing the
bottom most elements with its adjacent
element and exchanging of the two
elements .

 If bottom most element is smaller than
adjacent element after n-1 comparisons,
smallest among the total number of n
elements ascending to the top of the array.

 After the putting the smallest value at the
top of the array ,leaving the first element,
the remaining n-1 elements are scanned to
find the next smallest elements in the array.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Bubble Sort : Algorithm
Step 1 : [initialize]

i=0

n=no of elements in list

Step 2 : [loop for pass]

repeat through Step-5 while(i<n)

Step 3 : [initialize count for internally]

j=0

Step 4 : [loop for pass]

repeat through Step -5 while(j<n-i)

Step 5 : [check for exchange]

if(list[j]<list[j-1])

temp=list[j]

list[j+1=list[j]

list[j]=temp

Step 6 : exit

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Insertion Sort

 Insertion sort is a simple algorithm that is

relative efficient for small lists and most –

sorted lists often is used of more

sophisticated algorithms.

 It works by taking elements from the list

one by one and inserting them in their

correct position into a new sorted list.

 Insertion is expensive requiring shifting all

following over by one.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Insertion : Algorithm

Step 1 : [initialize]

a[0]=0

n=no of elements in list

Step 2 : repeat through Step-3 to Step-5

for i=0,1,…. N-1

Step 3 : temp=a[i]

pointer=i-1

Step 4 : while(temp<a[pointer])

a[pointer+1]=a[pointer]

pointer=pointer-1

Step 5 : a[pointer]=temp

Step 6 : exit

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Insertion : Example
(3,30,6,16,2) = (3,30,6,16,2)

(3,30,6,16,2) = (3,30,6,16,2)

(3,6,30,16,2) = (3,6,30,16,2)

(3,6,16,30,2) = (3,6,16,30,2)

(2,3,6,16,30)

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Selection Sort

 Selection sort is a simple sorting algorithm

that improves on the performance of bubble

sort.

 It works find smallest or largest elements

using a linear scan and swapping it into the

first position in the list.

 Then finding second largest elements by

scanning the remaining elements and so

on.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Selection Sort : Algorithm

Step 1 : [initialize]

Current=0

Size=no of elements in list

Step 2 : repeat through Step-7

While(Current<Size)

Step 3 : x=current+1

Step 4 : repeat through Step-6 while(x<Size)

Step 5 : if(a[current]>a[x])

temp=a[current]

a[current]=a[x]

a[x]=temp

Step 6 : x=x+1

Step 7 : current=current+1

Step 8 : Exit

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Quick Sort :

 Quicksort is, on average, the fastest sorting

algorithm for sorting collections with a large

number of elements.

 QuickSort is recursive and also uses a

“Divide and Conquer (વશ કરવુ)ં” approach to

sorting.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Quick Sort : Algorithm
Step 1 : [initialize]

low=first
high=last
pivot=array[(low+high)/2]

Step 2 : repeat through Step-7
While(low<=high)

Step 3 : repeat step-4 while(array(low)<pivot)
Step 4 : low=low+1
Step 5 : repeat step-6 while(array(high)>pivot)
Step 6 : high=high-1
Step 7 : if(low<=high)

temp=array[low]
array[low]=array[high]
array[high]=temp
low=low+1
high=high-1

Step 8 : if(first<high)

Quick_Sort(array,first,high)
Step 9 : if(low<last)

Quick_Sort(array,low,last)
Step 10: Exit

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Quick Sort :

 EXAMPLE :

 (5,2,6,1,3,4)

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Merge Sort :

 Merge sort takes advantage of the easy of

merging already sorted lists into a new

sorted list.

 It starts by comparing every two elements

and swapping them if the first should come

after the second.

 It then merges each of the resulting lists of

into lists of fours, then merges those lists of

four and so on. Until At last are merged into

final sorted list.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Merge Sort : Algorithm
Step 1 : [initialize]

i=0, j=0, k=0

Step 2 : repeat through Step-3

While(i<n && j<m)

Step 3 : if(list_a[i]<list_b[j])

result_list[k]=list_a[i]

i=i+1

k=k+1

else if(list_a[i]>list_b[j])

result_list[k]=list_b[j]

j=j+1

k=k+1

else

result_list[k]=list_a[i]

i=i+1

j=j+1

k=k+1

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Merge Sort : Algorithm

Step 4 : [size of list_a is larger than the list_b]

if(i<n)

Step 5 : repeat through step-5 for i=1,i+1,i+2,.. m-1

result_list[k]=list[j]

Step 6 : [size of list_b is larger then list_a]

elseif(j<m)

Step 7 : repeat through step-7 for j=1,j+1,j+2,..m-1

result_list[k]=list[j]

j=j+1

k=k+1

Step 8 : return

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Bucket Sort :

 Bucket sort, or bin sort is a sorting

algorithm that works by partitioning an

array into a number or buckets.

 Each bucket is then sorted individually,

either using different sorting algorithm, or

by recursively applying the bucket sorting

algorithm.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Bucket Sort : Algorithm

Step 1 : Start

Step 2 : Initialize Length

n<-length[A]

Step 3 : Initialize I=1

Step4 : For i=1 to n do

Insert A[i] into list B[nA[i]]

Step 5 : For i=0 to n-1 do

Sort list B with Insertion sort

Step 6 : Concatenate the lists B[0],B[1]

… B[n-1] together in order

Step 7 : Stop

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Bucket Sort : Algorithm

Step 1 : Start

Step 2 : Initialize Length

n<-length[A]

Step 3 : Initialize I=1

Step4 : For i=1 to n do

Insert A[i] into list B[nA[i]]

Step 5 : For i=0 to n-1 do

Sort list B with Insertion sort

Step 6 : Concatenate the lists B[0],B[1]

… B[n-1] together in order

Step 7 : Stop

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Bucket Sort

(22,15,12,8,10,6,72,81,33,18,50,14)

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Shell Sort :

 Shellsort is an in-place comparison sort.

 It generalizes an exchanging sort, such as insertion

or bubble sort, such as insertion or bubble sort, by

starting the comparison and exchange of elements

with elements that are far apart before finishing

with neighboring elements.

 Donald Shell published the first version of SHELL

SORT in 1959.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Shell Sort : Algorithm

Step 1 : Shell(item [], N)

Step 2 : Initialize gap by N/2;

Step 3 : While(gap)

For(i=gap;i<n;i++)

Step4 : Initialize X by item[i]

Step 5 : For(j=i-gap;j>=0

&& item[j]>x;j=j-gap)

Step 6 : Update item[j+gap] by x;

Step 7 : Update gap by gap/2;

Step 8 : Stop

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Searching Techniques

 There are two types of searching
techniques.

1. Linear search or Sequential Search

2. Binary search

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Linear search:

 This is the simplest technique to find out an
element from an unsorted list.

 It simply traverses from top to bottom in the
array and finds for the key value from the list
and displays output as well.

 The value of the key is compared with the first
element of the list.

 If match is found then an appropriate message
is displayed and searching is done on remaining
array elements.

 Otherwise next element is fetched and
compared with key element and this process is
continued till the key is found or array is
completely traverse.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Linear search: Algorithm

Step 1 : [Initialize]

k=0

fleg=1

Step 2 : repeat step 3 for k=0,1,2…n-1

Step 3 : if a[k]=element

fleg=0

output “Element Found ”, k+1

Step4 : if fleg=0

output “Element Not Found”

Step 5 : exit

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Binary search:

 Binary Search is the most efficient technique

to find the key from an array.

 Binary search only works on sorted lists and

it becomes easy to find any information very

fast.

 It is used to find location of a given element

or record in a list.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Binary search : Algorithm
Step 1 : [Initialize]

low=0

high=n-1

fleg=1

Step 2 : repeat step 4 while(low<=high)

Step 3 : mid=(low+high)/2

Step 4 : if(element<l[mid]) then

high=mid-1

elseif(element>l[mid]) then

low=mid+1

elseif(element=l[mid])

output “Found”,mid+1

flag=0

return

Step 5 : if(flag) then

output “NotFound”

Step 6 : exit

