
Ch – 1

History , Intro. & Language,

Basics Classes and Objects
Prepared By :

Ms. Kakadiya Jainam A.

About Java :

 Java was developed by James Gosling, Patrick

Naughton and their team at the Sun Microsystems, Inc.

in 1991.the language was named as ‘Oak’ but then in

1995.

 Java is an Object Oriented Programming Language.

 The term OOP can be understood by the OOP

principles.

 The programming language that follows or supports the

OOP principles can be termed as Object Oriented

Programming Language.

Object Oriented Programming And Principles :

 In OOP your complex program is divided in module

like data (member variables) and methods

(functions).

 This data and methods are wrapped into a single

unit which is known as class.

 There are mainly three principles of OOP.

 Encapsulation

 Inheritance

 Polymorphism

Encapsulation :

 Encapsulation is a mechanism by which we can

bind data (member variables) and methods together.

 It is a process of wrapping up of data and methods

into a single unit.

 So by encapsulation we can achieve the concept of

data hiding.

Inheritance :

 Inheritance is very useful principle of Object Oriented
Programming.

 It simply means to inherit something from one class to
another.

For Ex. If object of class A gets the properties, data or
methods of class B, then B class is called being
inherited in the class A. That means the process of
obtaining properties of another class to the object of one
class is known as Inheritance.

Polymorphism :

 Polymorphism is a Greek term, which means the

ability to take more than one forms by a single

entity.

 In OOP, polymorphism plays an important role.

 Polymorphism can be achieved by many ways like

method overloading, constructor overloading and

method overriding etc.

 For Example, A single man can behave differently

in different situations. Same as a single method

performs differently depending its argument.

Features of Java / Java Buzzwords :
 Java Buzzwords are features of Java. This makes the Java

most striking of programming language among other
languages.

1) Simple

2) Secure

3) Portable

4) Object-Oriented

5) Robust (Strong)

6) Multithreaded

7) Architecture Neutral (Performance Independent)

8) Interpreted

9) High Performance

10) Distributed

11) Dynamic

Features of Java / Java Buzzwords :

1) Simple

 Learning Java is said to be simple if you have

some basic knowledge of C / C++.

 Yes, Java adopts many syntax of C language and

if one understand the concept of Object Oriented

Programming, then java will be much easier.

 Many syntax like comments, declaring variables,

etc are same as C and C++.

Features of Java / Java Buzzwords :

2) Secure

 Security is the most important need for any

programming language.

 While downloading a file from Internet there is a

big risk of viral infection.

 In case of Java there is no risk of it. Because Java

provides a Firewall between your computer and

the application from which the computer

downloads files.

 Java does not allow access to other parts of your

program.

Features of Java / Java Buzzwords :

3) Portable

 A Java program is fully portable. So to make the

program portable.

 Java compiler generates executable code known

as Bytecode. Bytecode then interpreted via Java

Virtual Machine (JVM).

 This Bytecode is in machine language code which

every machine can read. This is main benefit of

language portability.

Features of Java / Java Buzzwords :

4) Object Oriented

 Java is a pure Object Oriented Programming

language.

 In OOP language the main focus is on the data

(member variables) and methods.

 Everything to be processed is put in the methods

using data or member variables.

Features of Java / Java Buzzwords :

5) Robust (Strong)

 Java is said to be robust (strong) language.

 There are two main reasons that makes it very robust :
Memory Management and Exception Handling.

 Memory Management is much easier in Java as it
automatically deallocates (free) memory through
garbage collection.

 Exception Handling in Java helps programmer to write
efficient programs.

 Divide by zero error, File not found exceptions etc. are
errors that often arise during programming. Java has its
own Exception Handler or you can manually handle
exception also.

Features of Java / Java Buzzwords :

6) Multithreaded

 A thread is a sub (child) process.

 Using multithreading you can execute more than

one thread simultaneously.

 Java has its own Thread class.

Features of Java / Java Buzzwords :

7) Architecture Neutral (Platform Independent)

 In Java the source code is first compiled by java

compiler and then the compiler generates

Bytecode.

 The Bytecode is in machine readable form so that

every machine can understand it. Then the

Bytecode interpreted using Java Virtual Machine.

 Therefore the java program written on any

platform can be run on any other platform.

 This features makes java Architecture Neutral or

Platform Independent.

Features of Java / Java Buzzwords :

8) Interpreted

 The execution of Java program is a two step

process.

 First the source code is Compiled using Java

compiler and generated Bytecode.

 Then the Bytecode is machine independent which

is interpreted using Java Virtual Machine. And

give output.

Features of Java / Java Buzzwords :

9) High Performance

 This feature is the result of above two features.

 As Java generates Bytecode which is machine

independent and are interpreted by JVM (Java

Virtual Machine) there is a great performance

arise.

Features of Java / Java Buzzwords :

10) Distributed

 Java is a very good in Networked programming

like client / server architecture.

 A method on one PC can be invoked by the object

of another PC. This is done by Remote Method

Invocation (RMI).

Features of Java / Java Buzzwords :

11) Dynamic

 Java is far more dynamic language than C or C++.

 In java Libraries can add new methods and

variables as needed.

 You can get information of variables easily.

 This is useful when you want to add or update

code while downloading programs from Internet.

JDK and its components :

 The Java Development Kit (JDK) is the

installation package of java.

 It has a collection of components that are used in

development of Java program. The JDK

components are given below.

JDK Tool Meaning Use

javac Java Compiler Compiles the

source code (.java

file) and translates

it into Bytecode.

JDK and its components :

JDK Tool Meaning Use

java Java Interpreter Interprets

Bytecode and

generate output.

javadoc Java

documentation

Used to create

documentation for

Java source code

in HTML format.

javah Java Header files It produces header

files for the

program which

uses native

methods.

JDK and its components :

JDK Tool Meaning Use

javap Java dissembler It converts

Bytecode file

(.class file) to

program

description

jdb Java Debugger Used to debug

your program.

appletviewer Applet Viewer Used to execute

Java Applets

Application V/S Applet :

 Application : Java Application is a normal

program which is run on your machine under the

control of operating system.

 Applet : Java applet is a program which is run

from the web browser or it can be run by

appletviewer.

A simple Java Program :

 (1) You can type a program using an editor like notepad.

Def 1: Write a java program to print a message on the

screen…

// This is a testing of message printing

class test

{

 public static void main(String args[])

 {

 System.out.println(“Hello”);

 System.out.print(“Welcome to the world of Java”);

 }

}

A simple Java Program :

 Save the file by name test.java (it is good to save

the file by classname.java).

 Compile the file using javac command.

 If there is no error, that means your program is

successfully compiled.

 After successful compilation a test.class file will

be generated in you directory .Class files are

generated for each class in your program.

 Now run the class file using java command. Then

the output will be displayed.

Definition :

Def [2] Write a program to print your address using

println() function.

Def [3] Write a program to print any ten names of

religious temple.

Def [4] Write a program to print Phonebook with ten

record.

Understanding main() method :

 The signature of main() method is:

 public static void main(String args[])

 public : It is access specifier which is public. So

that the main() method can accessed from any

class.

 static : static keyword specifies that main()

method is called without having to create instance

(object) of its class.

 void : It is the return type of main() method.

Which specifies that main() method doesn’t return

any value.

Understanding main() method :

 main : main() method is the entry point of your

program. From main() the execution of program

starts.

 String args[] : main() method can take array of

String type values as argument, which can be

supplied as command line argument.

System.out.println() :

 System : System is class that provides access to

the system.

 out : It is the output stream that is used to send

data to the console (output screen).

 println() : Prints the string passed as argument

and gives a line feed.

 print() : Print the string passed as argument.

Java Virtual Machine (JVM) :

 Java Virtual Machine (JVM) is the interpreter for
the Bytecode generated from the source code. The
execution of java program is two step process.

 Step 1 :

 [. Java file] javac compiler [.class file]

 Step 2 :

 [. class file] java command [output]

Source

code

Byte

code
Java Compiler

Byte

code

Executable

code

JVM (Java

Interpreter)

Java Virtual Machine (JVM) :

I. The source file (.java file) is Compiled by javac

compiler and Bytecode is generated if no errors

are present. Bytecode is .class file.

II. This Bytecode is then interpreted by JVM and the

output is generated.

Basic Structure of Java Program :

 There may be more than one class in a java

program. But you have to run that class which

has the main method.

 Basic structure of a Java Program is as under :

 (1) Documentation Section

 (2) Package Statement

 (3) Import Statement

 (4) Class definition

 (5) Main method

Basic Structure of Java Program :

1) Documentation Section :

 In this section you can write the documentation

for your program like, program definition, author

information, the logic of your program etc.

 This is optional statement.

 It is written in comment lines (//) or (/*……..*/)

Basic Structure of Java Program :

2) Package statement :

 If you want to save your program in a package
(directory) then the package statement is
included.

 This is also an optional statement.

3) Import statement :

 If you want to import any library or user defined
package, the import statement is used.

 This is an optional section.

 Now from this imported package you can use its
classes and methods.

 Example : import java.util.Date;

Basic Structure of Java Program :

4) Class definition

 You can define classes in this section.

 Use class keyword to declare a class.

 There can be member variables and methods in

this class.

 This is required and it is compulsory section.

Basic Structure of Java Program :

5) Main method

 In your program you can have more than one

class, but there should be one class that contains

the main method.

 This class is run to generate output because the

main method is the entry point of program

execution.

 This is compulsory section.

Java IDE (Integrated Development

Environment) (NetBeans and Eclipse) :

 NetBeans and Eclipse are two most popular IDEs
(Integrated Development Environment) in which
you can develop, debug and deploy your
programs easily.

 NetBeans : NetBeans is an open source editor
with lots of features to develop any kind of
complex project.

 It lets you develop java desktop, web and mobile
applications, while also providing great tools for
PHP and C/C++ developers very quickly and
easily.

Java IDE (Integrated Development

Environment) (NetBeans and Eclipse) :

 Following are some striking features of NetBeans

IDE :

1) Fast and Smart Coding :

 It’s not simply a text editor but much more than

that. It helps you to code very easily and quickly

by providing automatic line indents, it highlights

similar keywords, and pair of brackets.

 Also gives coding tips by opening pop-up menu

to suggest the related code.

Java IDE (Integrated Development

Environment) (NetBeans and Eclipse) :

2) Easy and Efficient Project Management :

 It helps you to easily manage your project even if

it is getting large with number of files with a

large number of lines.

3) Rapid User Interface Development :

 It provides drag and drop facility to rapidly

develop and designed your form or pages.

Java IDE (Integrated Development

Environment) (NetBeans and Eclipse) :

4) Bug free Code :

 The NetBeans provides static analysis tools such
as FindBugs tool for identifying and fixing
common errors in Java Code.

 Eclipse : The Eclipse is another very powerful
editor for so many languages such as Java, PHP,
C, C++ etc.

 The Eclipse IDE for Java developers contains
everything that you will need to built Java
applications.

Points of learning :

 Comments

 Identifier

 Literals

 Separator

 Keywords

 Data Types

 Variable

 Type conversation and Type Casting

 Array with its type

Comments :

 There are three types of comments in java.

1) Single line comments : Double slashes are used to indicate
single line comment.

 Ex. //This is a single line comment.

2) Multi line comments : The text written between /* and */
considered as comments.

 Ex. /* This line is in comment.

 This is also in comment. */

3) Documentation Comment : Documentation Comment is
used to generate as HTML documentation file for your
program. The text between /** and */ are documentation
comment.

 Ex. /**

 * This is documentation comment

 * @author Mitesh Mandaliya

 */

Identifiers :

 An identifier is a name given to a variable, a method, or a
class. To declare an identifier we must follow some rules :

 Identifier may consist of letters (uppercase or lowercase),
digits, underscore or a dollar sign.

 It must not start with a number.

 No white space is allowed.

 No keyword can be used as identifier.

 Some valid examples of identifiers:

 valididentifier, sub1, mark1, first_value, $price

 Some invalid examples of identifiers :

 In valid, 1mark, first-value.

Literals :

 In Java any constant value is known as literal. The

literal can be any one of the following :

 Integer literal :

 Ex. int x=300;

 Here x is a variable and 300 is value which

is integer literal.

 Floating point literal :

 Ex. double d=39.86;

 Here 39.86 is floating point literal.

Literals :

 Character literal :

 Ex. char c=‘A’;

 Here A is a character literal.

 Some character literals should be written using

escape sequence character, which is back slash

(‘\’). For example if you want to print some special

character like quotes (“ ”) , back slash will be

used.

Literals :

Escape Sequence Meaning

\n To give new line

\b Backspace

\t To give space as much

as tab

\’ To print single quote

\” To print double quote

\\ To print back slash

Literals :

 String literal :

 Ex. string str=“Java”;

 Here Java is a string literal.

 To print “ I like “Java” “.

 System.out.println(“I like \”Java\” “);

 Boolean literal :

 Boolean literal can be true or false.

 Ex. boolean flag=true;

 Here true is Boolean literal.

White-spaces :

 The white-space can be a space, a tab or a new

line.

 The extra white space are ignored by Java

compiler.

 Therefore if you write your program n single line it

makes no difference.

Separators :

 The separators are used to separate the statements
for each other.

 For example, the semicolon (;) is used to terminate
a statement. The list of various separator is shown
below.

Separator Name Use

; Semicolon Used to

terminate a

statement

Separators :

Separator Name Use

, Comma Used to declare more than one

variables of same type. Also

used in for() loops to specify

more than one conditions.

. Dot or

period

Used to access a variable or

method of a class through

object. Also used to separate

package from sub package.

: Colon Used to specify a label.

() Parenth

esis

Used in method declaration and

method call. Also used in if

conditions and loops.

Separators :

Separator Name Use

{} Braces Used to enclosed statements of

methods, class or any block of

code. Also used to initialize an

array.

[] Brackets Used to declare array and

array elements.

Keywords :

 Keyword is a pre-defined word.

 There are 49 keywords in Java which are reserved

and each one has its unique meaning.

 They can not be used as identifier.

 They are listed below:

abstract assert boolean break byte case

catch char class const continue default

do double else extends final finally

float for goto if implements Import

Keywords :

instanceof int interface long native

package private protected public return

static strictfp super switch synchronized

throw throws transient try void

while new short this volatile

Data types :

 In Java, every variable has a data type. They can

be classified as follows:

Data Types

Integer Type

- byte

- short

- int

- long

Floating

Point Type

- float

- double

Character

Type

- char

Boolean

Type

- boolean

 Integer Data Types :

 The byte, short, int and long are integer data types.

They all are signed types. So they can have

positive as well as negative values.

 The size and range of these types are as follows.

Type Size (in bits) Range

byte 8 -128 to 127

short 16 -32,768 to 32767

Int 32 -2,14,74,83,648 to

2,14,74,83,647

long 64 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

 Integer Data Types :

 Byte:

 Byte is a one byte data type. Its size is 8 bits and it

can store values between -27 to 27-1.

 To declare a byte type variable, use byte keyword.

 Ex. byte b;

 Integer Data Types :

 Short:

 Short is a 16 bit data type. It can store values

between -215 to 215-1.

 To declare a variable of a short type short

keyword is used.

 Ex. short s=1000;

 Integer Data Types :

 Int:

 Size of int type is 32 bits. Its range is -231 to 231-1.

 Int keyword is used to declare an int type variable.

 Ex. int i,j;

 Integer Data Types :

 Long

 Long type is of 64 bit and it can store values

between -263 to 263-1.

 To declare a long type variable long keyword is

used.

 Ex. long val;

 Floating point types :

 The float and double are floating point type data

types.

 They are used to store floating point values. The

size and range of these types are as follows.

Type Size (in bits) Range

float 32 1.4e - 045 to 3.4e + 038

double 64 4.9e - 324 to 1.8e + 308

 Floating Point Types :

 Float

 Float data type is used when no more precision is

required. Its size is 32-bits.

 It is generally used to store rupees, dollars, etc.

with some less digit precision.

 Ex. float f;

 Floating Point Types :

 Double

 Double is a 64 bit data type. It stores data with

double precision (keyword).

 Therefore if we want to deal with the mathematical

functions like sine, cosine, or want to find square

root of a number then double data type is used.

 Ex. double d;

 Character types :

 Char type is used to store a single character.

 The char type in Java differs from C and C++.

 In C and C++ char type is 8 bits in size whereas here char

is 16-bit wide which uses Unicode 16-bit format to store

data which is used worldwide.

 Ex. char c=‘A’;

 char ch=65;

 Both the variables c and ch have the same value.

Type Size (in bits) Range

char 64 0 to 65,535

 Boolean types :

 Boolean data type is 8 bit data type and used to

store logical values. i.e. true/false.

 Every relational operator returns a boolean value.

 Ex. boolean flag=false;

 boolean isOK=true;

 In Java all variables are of a specific data type and

must be initialized before using them.

Type Size (in bits) Range

boolean 8 True or False

 Boolean types :

 So if we do not initialize them, they have

following default values.

 But remember that these default values are just to

initialize with default values, i.e. Java does not

automatically initialize them.

Data

Type

Default Initial

Value

byte 0

short 0

int 0

long 0L

Data Type Default

Initial Value

float 0.0f

double 0.0d

char ‘\0’

boolean false

 Variable :

 A variable is an identifier for storage in a Java

program. Each variable has a data type and it has a

scope.

 To declare a variable:

 Synatax: Data_type Identifier [= value];

 Ex. int i=0; or int x;

Here data type is any one data type.

You can declare multiple variables of same types at

once.

 Ex. int a,b,c; or int a=11,b=220,c;

 The scope and Lifetime of Variable :

 When you declare a variable, it has a specific

scope up to where it is visible and can be used.

 So when you declare a variable in a block, this

block is the scope of this variable.

 So if you declare a variable in a method then it can

be used within that method, if you declare it in a

class, its scope is the entire class.

 An example to demonstrate scope of variable :

class scopeEx

{

 public static void main(String args[])

 {

 int a =10;

 if(a>5) //this is a block

 {

 int b=20;

 System.out.println(“A=“+a” and B=“+b” “);

 a++;

 } //The scope ends…b’s scope ends.

 System.out.println(“A is “+a); // Ok

// System.out.println(“B =“+b); // Error: b’s scope is not here…

 }

 An example to demonstrate scope of variable :

 static void scope()

 {

 int c=30;

 System.out.println(“c=“+c);

 // System.out.println(“A is”+a); //Error: A’s

 scope is not here…

 }

}

 Type conversation / Type casting :

 In many expressions we generally assign some

values or variables to other variables.

 These variables should be compatible with each

other.

 In Java, before assigning value to a variable, if

their types are not same, type conversation is

necessary.

 There are two types of conversation.

 - Implicit (Automatic) type conversion.

 - Explicit type conversion also known as type

casting.

 Type conversation / Type casting :

Implicit (Automatic) type conversion.

 The implicit type conversion takes place
automatically when the types are compatible and
the destination type are larger than the source type.

 For Example, if we assign an int type value to a
long type variable, it will be converted
automatically.

 All numeric data types are compatible with each
other but not with char or boolean type.

 Because char and boolean are not compatible with
each other.

 Type conversation / Type casting :

Explicit type conversion.

 When in an expression the destination type is not
larger than the source type, the conversion will not
be done automatically, but we have to do it
explicitly by type casting.

 For Example, if we want to assign a long type
value to an int type value, this will not done
automatically, but you have to use a cast.

 The general form of type casting is:

 Var = (target-type) value;

 Example: long l=9999999;

 int i=(int) l;

 Type conversation / Type casting :

 The following list shows which type can be

converted automatically to which types.

From To

byte short, int, long, float, double

short int, long, float, double

char int, long, float, double

int long, float, double

long float, double

float double

 Type conversation / Type casting :

 // Simple example of type conversion and type casting.

 Def.. Write a program to perform implicit and

Explicit type casting.

 class type_cast

 {

 public static void main(String args[])

 {

 int i=1000;

 System.out.println(“Value of i=“+i);

 long l;

 l=i; // this is implicit type conversion

 System.out.println(“Value of L=“+l);

 Type conversation / Type casting :

 // Simple example

 long ll=999999;

 System.out.println(“Value of LL=“+l);

 int ii;

 ii=(int)ll; //Explicit type casting.

 System.out.println(“Value of ii=“+ii);

 }

}

 Type conversation / Type casting :

1) Write a program for type casting to convert byte type into
short.

2) Write a program for type casting to convert short type into
double.

3) Write a program for type casting to convert char type into int.

4) Write a program for type casting to convert int type into long.

5) Write a program for type casting to convert long type into
float.

6) Write a program for type casting to convert float type into
double.

 Arrays :

 An array is a group of variables of same data type

which have same name.

 Therefore it is used when more than one variables

of same data type are to be used in a program.

 There are different types of array can be classified

in JAVA.

 (1) One dimensional Array

 (2) Two dimensional Array

 (3) Multi dimensional Array

 (4) Jagged Array

(1) One dimensional Array

 A one dimensional array is a collection of

variables with one row and multiple columns or

one column and multiple rows.

 Declaration of one dimensional array:

 Syntax:

 Data_Type array_name[];

 Ex. int marks[];

 Here the mark is said to be array of integers. The

array is just created but it is not ready to use. To

use it allocate memory space to it using new

keyword.

(1) One dimensional Array

 Syntax:

 Array_name = new Data_Type[];

 Ex. marks = new int [10];

 Now marks is allocated size of 10 int values and it

can be used now.

 Alternatively you can combine these two

statements like:

 int marks[] = new int[10];

 Now to initialize array element you can refer to it

by its index which starts from 0.

(1) One dimensional Array

 Example:

 int marks[] ={60,65,56,76,77};

 Here an array of 5 int is created and initialized

with values 60 to first element, 66 to second

element and so on.

(1) One dimensional Array (Example)
 Example of one dimensional array: Def ()…Write a

program to create an array and print it’s sum of values.

class oneDimArray {

 public static void main(String args[])

 {

 int marks[];

 marks = new int[3];

 marks[0]=66;

 marks[1]=65;

 marks[2]=70;

 int total=marks[0]+marks[1]+marks[2];

 double per=total/3;

 System.out.println(“Total marks is:”+total);

 System.out.println(“Percentage is:”+per);

 }

}

(1) One dimensional Array (Example)

 Def.. Write a program to create an array with

name of days and print array with for() loop.

 class oneDimArray {

 public static void main(String args[])

 {

 String days[]={“Monday”,”Tuesday”,

 ”Wednesday”,”Thursday”,”Friday”,”Saturday”,

 ”Sunday”};

(1) One dimensional Array

 for(int i=0;i<7;i++)

 {

 System.out.println(“The day [“+(i+1)+”] is:

“+days[i]);

 }

 }

}

(2) Multi dimensional Array

 The multi dimensional arrays are array of array. It
represents a variable which has values in tabular
form i.e. in rows and columns.

 The syntax to declare a two dimensional array is:

 data_type array_name[][] =new
data_type[row] [column];

 Ex. int marks[] [] = new int [3][2];

 Here marks is a two dimensional array which has 3
rows [students] and 2 columns [subjects].

(2) Multi dimensional Array

 To access an element simply specify row and

column index. To access marks of 2nd subject of

3rd student use:

 Ex. marks[2][1]=67;

 marks[2] means 0 to 2 = 3 student

 marks[1] means 0 to 1 = 2 subject

(2) Multi dimensional Array(Example)
 Def.. Write a program to create a multi dimensional array with

its values and print array with for() loop.

class multiDim

{

 public static void main(String args[])

 {

 int i,j;

 int marks[][]={{10,20,30},{100,200,300},{1000,2000,3000}};

 for(i=0;i<=2;i++)

 {

 System.out.println(+(i+1));

 for(j=0;j<3;j++)

 {

 System.out.println("value is:"+marks[i][j]);

 }

 }

 }

}

(3) Jagged Array :

 Jagged array is a special type of multi dimensional array

in which each row has different number of columns.

 Therefore it is also known as variable length array.

 To declare a jagged array you have to specify only row

size and leave the column size blank.

Syntax:

 Data_type array_name[][]=new data_type[Rowsize][];

Ex. double d[][] = new double[5][];

 int j[][]=new int[5][];

 Here j is a jagged array having 4 rows.

(3) Jagged Array :

 Now you can declare the size of each columns for

each row as shown below.

 j[0]=new int[3];

 j[1]=new int[2];

 j[2]=new int[4];

 j[3]=new int[3];

J[0][0] J[0][1] J[0][2]

J[1][0] J[1][1]

J[2][0] J[2][1] J[2][2] J[2][3]

J[3][0] J[3][1] J[3][2]

0

1

2

3

0 1 2 3

(3) Jagged Array :

 First row i.e. j[0] contains 3 columns, second row

j[1] has 2 columns, third row j[2] has 4 columns,

and so on.

 Following is an example of jagged array in which

we have initialized all the rows of array.

Example : Jagged Array.

class jagged_arrayEx

{

 public static void main(String args[])

 {

 int a[][]={{1,2,3,4},{1,2},{1,2,3},{1,2,3,4,5}};

(3) Jagged Array :

 System.out.println(“Jagged Array…..\n\n”);

 for(int i=0;i<a.length;i++)

 {

 for(j=0;j<a[i].length;j++)

 {

 System.out.println(a[i][j]+” “);

 }

 System.out.println(“\n”);

 }

 }

}

Operators:

 Meaning : Operator is a symbol that performs some

operations on its operands and gives the results.

Java has a rich set of operators. Operators in java

can be divided in main four categories.

 (1) Arithmetic Operators

 (2) Relational Operators

 (3) Logical Operators

 (4) Bitwise Operators

(1) Arithmetic Operators :

Arithmetic Operators are those which are used in
mathematical calculators such as addition,
multiplications etc.

Arithmetic operators can be divided in further sub
categories.

 (1) Basic Arithmetic Operators

 (2) Increment/Decrement Operators

 (3) Short-Hand Operators

In all these arithmetic operators we can use only
numeric data type values such as int or float, but we
cannot use boolean type values in these operators.

 Arithmetic Operators :

Whereas we can use char type values because in fact char is

a subtype of int data type.

Basic Arithmetic Operators :

Operator Description

+ Performs addition of given two

operands. Also used as unary plus

operator.

- Performs subtraction of given two

operands. Also used unary minus

operator.

 Arithmetic Operators :

Operator Description

* Performs multiplication of given two

operands.

/ Performs division of given two

operands.

% Returns the reminder of division

(Modules)

 Arithmetic Operators :

All basic arithmetic operators are binary operators

and the + and – operators are both binary and unary

operators.

Unary (-) operator simply changes the sign of the

operands. [i.e. binary operators take two operands

and unary operators take only operands. While

ternary operators take three operands.] Note:

Ternary operators are discussed later in this chapter.

 Arithmetic Operators :

Example of Arithmetic Operators with unary plus

and unary minus.

Def :- Write a program to perform arithmetic

calculation using arithmetic operators with Unary

plus and Unary minus.

class arith_unaryEx

{

 public static void main(String args[])

 {

 int num1=10,num2=20;

 int add,sub,mul,div,unaryPlus,unaryMinus;

 Arithmetic Operators :

 add=num1+num2; //Addition

 sub=num1-num2; //Subtraction

 mul=num1*num2; //Multiplication

 div=num1/num2; //Division

 unaryPlus=+num1; //Unary Plus

 unaryMinus=-num2 //Unary Minus

 S.o.println(“Addition is:”+add);

 S.o.println(“Subtraction is:”+sub);

 S.o.println(“Multiplication is:”+mul);

 S.o.println(“Division is:”+div);

 S.o.println(“Unary Plus is:”+unaryPlus);

 S.o.println(“Unary Minus is:”+unaryMinus); } }

 Arithmetic Operators :

Def :- Write a program to perform arithmetic

calculation with real number (Floating point) using

unary plus/minus operators.

 The Modulus Operator :

The modulus operator in Java is more powerful than

other languages.

Because it can be applied to integer type values as

well as floating point values.

It simply returns the reminder of division operation.

Following example shows it:

class modulusOp

{

 public static void main(String args[])

 {

 The Modulus Operator :

 int num1=24,imod;

 double num2=39.86,rmod;

 imod=num1%10;

 rmod=num2%10;

 S.O.P(“\nInteger reminder is:”+imod);

 S.O.P(“\nFloating point reminder is:”+rmod);

 }

}

 Increment (++) /Decrement(--) Operators:

Both these operators are unary operators.

The increment operator increases the value of

operand by one and the decrement operator

decreases the value of operand by one.

For Example:

 a=a+1; is equivalent to a++; and

 b=b-1; is equivalent to b--;

Here these operators can be used in one of two forms:

Postfix and Prefix.

 Increment (++) /Decrement(--) Operators:

 Postfix operator is one which the operator is put
after (post) the operand and in Prefix operator the
operator is put before (pre) the operand.

For Example:

 x++ is same as ++x and y-- is same as --y

 int a=10,b=20;

 int c=++a;

 Here value of C will 11.

 But, if we use postfix operator, like

 int d=b++;

 Then the value of d will be 20.

 Increment (++) /Decrement(--) Operators:

 Because in case of postfix operator the increment or

decrement the happens after (post) the assignment,

and in prefix the increment or decrement happens

before assignment takes place. i.e.

c=++a ++a a=a+1 a=10+1

 a=11 c=a c=11 and a=11 and

 d=b++ d=b b=20 d=20

 b++ b=b+1 b=20+1 b=21 and

d=20

 Increment (++) /Decrement(--) Operators:

 Def : Write a program to print value of variables using

increment / decrement operator.

class incr_decrEx

{

 public static void main(String args[])

 {

 int a,b,c,d; c=a++;

 a=b=c=d=10; OutPut d=--b; OutPut

 S.O.P(“a=“+a); a=10 S.O.P(“a=“+a); a=11

 S.O.P(“b=“+b); b=10 S.O.P(“b=“+b); b=9

 S.O.P(“c=“+c); c=10 S.O.P(“c=“+c); c=11

 S.O.P(“d=“+d); d=10 S.O.P(“d=“+d); d=9 }}

 Short hand Operators:

Short hand operators are the combination of an
arithmetic operator and assignment operator.

These operators are used because they are shorter to
write and faster (efficient) to use.

Syntax :

 variableName = variableName ope expression;

Here variableName is any valid variable, ope is any
arithmetic operator and expression is any
expression.

For Example : x=x+3; is same as x+=3;

Its advantage can be seen when complex operation
is involved.

 Short hand Operators:

 X=x+(y*z*2.5);

This statement can be rewrite using short hand

operator as follows:

 x+=y*z*2.5;

Example:

class shorthandOpe

{

 public static void main(String args[])

 {

 Short hand Operators:

 double a,b,c;

 a=24.10;

 b=88;

 c=39.86;

 a+=3.2;

 b%=10;

 c/=2;

 S.O.P(“a=“+a);

 S.O.P(“b=“+b);

 S.O.P(“c=“+c);

 }

}

(2) Relational Operators:

The relational operators in Java are used to check the

relation between two operands.

They return a boolean value i.e. true or false.

The relational operators are listed below:

Operator Description

= = Is equal to

! = Is not equal to

< Is less than

> Is greater than

< = Is less than or equal to

> = Is greater than or equal to

(2) Relational Operators:

These operators are mostly used in if statements and

loops to check the condition.

Def : WAP to perform a relational operator’s

calculations.

class relations_opeEx

{

 public static void main(String args[])

 {

 int a,b,c,d;

 a=10,b=20,c=10,d=5;

(2) Relational Operators:

 S.o.p(“a=“+a+”b=“+b+”c=“+c+”d=“+d+”\n”);

 S.o.p(“a==b is :”+(a==b));

 S.o.p(“a==c is :”+(a==c));

 S.o.p(“a>b is :”+(a>b));

 S.o.p(“a<=b is :”+(a<=b));

 S.o.p(“a>d is :”+(a>d)); } }

Output :

a==b is : false a<=b is : true

a==c is : true a>d is : true

a>b is : false

(3) Logical Operators:

Logical operators in Java are used to combine two or more
boolean conditions together.

Here the operands must be of boolean type variables or
conditions and the results returned is also a boolean value.

Operator Description

& Logical AND

&& Short-Circuit AND

| Logical OR

|| Short-Circuit OR

^ Exclusive OR

! Logical NOT

(3) Logical Operators:

X Y X&Y X|Y X^Y !X !Y

True True True True False False False

True False False True True False True

False True False True True True False

False False False False False True True

The logical AND (&) operators returns true if both
the operands are true else returns false.

Whereas the logical OR (|) operator returns false if
both the operands are false else returns true.
Means it returns true if any one operand
(condition) is true.

The Ex-OR (^) operator returns true if from both
operands exactly one operand is true (i.e. not zero
or both operands are true).

(3) Logical Operators:
 Def : WAP to demonstrate of simple logical operators.

class logicalOpEx

{

 public static void main(String args[])

 {

 boolean a=(10<5); // false

 boolean b=(‘1’==‘1’); // true

 boolean c=(5==5); //true

 S.o.p(“a=”+a);

 S.o.p(“b=”+b);

 S.o.p(“c=”+c);

 S.o.p(“a&b=”+(a&b));

 S.o.p(“a | b=”+(a|b));

 S.o.p(“a^b=”+(a^b));

 S.o.p(“b^c=”+(b^c));

 S.o.p(“!a=”+(!a));

 } }

Difference between simple and short-circuit

operators:

The && and || operators are known as short-circuit

operators which are not available in other

programming languages. There is a minor difference

between short-circuit and simple operators.

From the operation logical AND and logical OR

operators we can find that the AND operator

evaluates to true if both the operands are true and

otherwise false. Means if anyone operand is false

then the result is false.

Difference between simple and short-circuit

operators:

And the OR operator evaluates to true if anyone
operand is true no matter what the other is.

The short-circuit operators uses this concept to
perform AND / OR operation.

Short-circuit AND (&&) operator checks the first
condition and if it is false then it doesn’t check the
next condition, as this will evaluates to false.

Same as in short-circuit OR (||) operator, on
encounter of a true expression it will never check the
next condition and will evaluate to true.

Difference between simple and short-circuit

operators:

For example : if(b!=0 && a | b > 5)

 {

 //statements….

 }

Here if b is 0 then the first condition becomes false
so the next expression will never be performed.

So there is no change of divide by exception. But if
this statement have written using & operator then
both conditions would have checked.

(4) Bitwise Operators:

Bitwise operators can be used with integer
type values.

As the name suggest they perform
operations on operands bit by bit.

Java has following bitwise operators:

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR (XOR)

~ Bitwise unary NOT

<< Bitwise shift left

>> Bitwise shift right

(4) Bitwise Operators:

These operators operate on bits. So all the
operands are converted into binary number
system first and then the operation is
perform on bits.

Bitwise AND, OR, XOR and NOT uses the
same logic as the logical operators.

Consider 1 for true and 0 for false.

X Y X&Y X|Y X^Y !X !Y

0 0 0 0 0 1 1

0 1 0 1 1 1 0

1 0 0 1 1 0 1

1 1 1 1 0 0 0

(4) Bitwise Operators: (AND &)

For example :

 int a=12; // 1100 in binary

 int b=10; // 1010 in binary

 = 1 1 0 0 =12

 = 1 0 1 0 =10

 a & b = 1 0 0 0 = 8

 AND

 1 & 1 = 1

 1 & 0 = 0

 0 & 1 = 0

 0 & 0 = 0

(4) Bitwise Operators: (OR |)

For example :

 = 1 1 0 0 = 12

 = 1 0 1 0 = 10

 a | b = 1 1 1 0 = 14

 OR

 1 | 1 = 1

 1 | 0 = 1

 0 | 1 = 1

 0 | 0 = 0

(4) Bitwise Operators: (XOR ^)

Bitwise exclusive OR (^) operator gives 1 if
from both operands exactly one operand is
one(1) i.e. not both should be 1 or 0.

Or for simplicity one can say that if both
operands are same [i.e. both 0 or both 1]
then it returns 0 else returns 1.

So if,

 a ^ b = 6.

 a = 1 1 0 1 =13

 b = 1 0 1 1 =11

 a ^ b= 0 1 1 0 =6

(4) Bitwise Operators: (NOT ~)

Bitwise unary NOT (~) operator simply
complements each bit.

Here NOT operator complements each bit,
but there is a point which should be kept in
mind that in Java int data type is of 32-bits.
So ~ operator performs on all 32-bits .

For example byte data type is of 8 bits.

 a = 1 0 1 0 =10

 a = 0 0 0 0 1 0 1 0 =10

 ~a = 1 1 1 1 0 1 0 1 !=10

(4) Bitwise Operators: (Shift Operators [left])

Shift left (<<) operator shifts each bit to the
left side and the Shift right (>>) operator
shifts each bit to the right side.

If a=10 then a<<2 is shifting each bit to left
side two times.

 a=10 = 1 0 1 0 extra bit is 0

shift left one time 1 0 1 0 0 =20

Shift left second time 1 0 1 0 0 0 =40

So the a<<2 = 101000=40

(4) Bitwise Operators: (Shift Operators [right])

 If the a=8;

 a>>1 0 1 0 0 0 =8

 a>>2 0 0 1 0 0 =4

 a>>3 0 0 0 1 0 =2

 a>>4 0 0 0 0 1 =1

 For example: SOLVE ERROR

class bitwiseOpe

{

 public static void main(String args[])

 {

(4) Bitwise Operators: (Shift Operators [right])

 int a=12; Output

 int b=10; a=12

 S.o.p(“a=”+a); b=10

 S.o.p(“b=”+b); a&b=8

 S.o.p(“a&b=”+(a&b); a|b=14

 S.o.p(“a|b”+(a|b)); a^b=6

 S.o.p(“a^b”+(a^b)); ~a=3

 S.o.p(“~a=”+(~a)); a<<2=48

 S.o.p(“a<<2”+(a<<2)); a>>2=3

 S.o.p(“a>>2”+(a>>2));} }

Other Operators :

 This operator is used to assign some value or expression
to a variable. It assigns value from the right side to the left
of expression.

 For Example :

 int i;

 i=10; // 10 is assigned to I

 String str;

 str=“hello”;

In addition this operator can be used to assign same value to
multiple variables.

 For Example :

 int a,b,c,d;

 a=b=c=d=0; // all four variables are initialized to 0.

The Assignment Operator

Other Operators :

 This ? Is also known as ternary operator.

 Syntax:

 var= (condition) ? (expression1) : (Expression2);

 Here the first condition is checked. If the condition is true
then the expression1 is assigned to the variable.

 If the condition if false then the value of expression2 is
assigned to variable.

 For Example:

class conditionalOpe

{

 public static void main(String args[])

 {

 int a,b,max;

 double per;

The Conditional Operator (? :)

Other Operators :

 String result;

 a=10;

 b=100;

 per=45.6;

 max=(a>b)?”Pass”:”Fail”;

 System.out.println(“Maximum number is:”+max);

 System.out.println(“Result is:”+result);

 }

}

Output

Maximum number is: 100

Result is: Pass

The Conditional Operator (? :)

Other Operators :

The instanceof operator returns a boolean value,
i.e. true or false.

The instanceof is an object reference operator and
returns true if the object on the left hand side is an
instance of the class given on the right hand side.

This operator allows us to determine whether the
object belongs to a particular class of not.

For Example.

 person instanceof Student is true if the object
person belongs to the class Student; otherwise it
is false.

The instanceof Operator

Other Operators :

The dot (.) operator is used to access the instance
variables and methods of class objects.

For Example

 person1.age // reference to the variable age

 person1.salary() // reference to the method
salary().

 It is used to access classes and sub packages
from a package.

The DOT (.) Operator

Introduction :
1) Selection Statement

 If

 Nested If

 If-Else-If Ladder

 Switch
2) Iteration Statement

 While

 Do While

 For
3) Jump Statement

 Break

 Continue

 Return

1) Selection Statements :

 Java supports basic two selection statement. If and

Switch, while if again divided into three parts.

 These statements allow you to control the flow of

your program’s execution based upon condition

known only during runtime.

1) Selection Statements :

1) IF statement

 The if statement can be use to route program execution

through two different paths.

 Syntax :

 if (condition)

 {

 Statement1;

 }

 else

 {

 Statement2;

 }

1) Selection Statements :
1) IF statement (WAP to enter a value and check that a value is positive, negative or

zero)

 Example :

class ifdemo

{

 public static void main(String args[])

 {

 int marks=50;

 String result;

 if(marks>40)

 {

 result=“Pass”;

 }

 else

 {

 result=“Fail”;

 }

 System.out.println(“Result is :”+result);

 }

}

Output :

 Result is : Pass

1) Selection Statements :

2) Nested IF statement

 A nested IF is an IF statement that is the target of another
IF-ELSE statement.

 Example : (WAP to enter an age and gender to chech
that if age is greater than or equal to 21 and gender is
male than print “You Can Marry” otherwise print
“You Cannot Marry”.

class Nestedifdemo

{

 public static void main(String args[])

 {

 String nm=“M;

 int age=21;

1) Selection Statements :

2) Nested IF statement

 if(nm=“M”)

 {

 if(age>=21)

 {

 System.out.println(“You can marry”);

 }

 else

 {

 System.out.println(“You can’t marry”);

 }

 }

 }

}

Output : You can marry

1) Selection Statements :

3) IF-ELSE-IF Ladder

 A common programming construct that is based

upon a sequence of nested ifs is the IF-ELSE-IF

ladder. The IF statements are executed from top to

down.

 As soon as on of the conditions controlling the IF

is true, the statement associated with the next IF

will execute.

 If the none of the condition is true then the final

ELSE statement is executed.

1) Selection Statements :
3) IF-ELSE-IF Ladder

 Syntax :

 if(condition1)

 {

 Statement1;

 }

 else if(condition2)

 {

 Statement2;

 }

 else if(condition3)

 {

 Statement3;

 }

 ……

 ……

 ……

 else

 Statement N;

1) Selection Statements :

3) IF-ELSE-IF Ladder

 Example : (WAP to create a student result with five subjects
and print it’s total & percentage with appropriate message)

class if_else_ifdemo

{

 public static void main(String args[])

 {

 String result;

 int marks=65;

 if(marks>=75)

 {

 result=“Distiction”;

 }

1) Selection Statements :

3) IF-ELSE-IF Ladder

 Example :

 else if(marks>=60)

 {

 result=“First Class”;

 }

 else if(marks>=50)

 {

 result=“Second Class”;

 }

 else

 {

 result=“Third class”;

 }

(WAP to find out maximum number out of given 3 numbers).

1) Selection Statements :

 Switch

 The SWITCH statement in Java’s multi way

branch statement.

 It provide easy way to dispatch execution to

different parts of your code based on the value of

an expression.

 Syntax : switch(expression)

 { case value1:

 Statement1;

 break;

1) Selection Statements :

 Switch

 case value2:

 statement2;

 break;

 case valueN:

 statementN

 break;

 default:

 Default statement;

 }

1) Selection Statements :

 Switch Example: (WAP to enter a number of day and
print name of the day using switch statement).

class switch_demo

{

 public static void main(String args[])

 {

 int day=2;

 switch(day)

 {

 case1:

 S.O.P(“Monday”);

 break;

1) Selection Statements :
 Switch Example:

 case2:

 S.O.P(“Tuesday”);

 break;

 case3:

 S.O.P(“Wednesday”);

 break;

 case4:

 S.O.P(“Thursday”);

 break;

 case5:

 S.O.P(“Friday”);

 break;

 case6:

 S.O.P(“Saturday”);

 break;

1) Selection Statements :

 Switch Example:

 case7:

 S.O.P(“Sunday”);

 break;

 default:

 S.O.P(“No match”);

 break;

 }

 }

}

Output : Tuesday

2) Iteration Statements :

 Java supports basic THREE iteration statement,

WHILE, DO-WHILE and FOR.

 These statements create commonly called LOOPS.

1) While:

• While loop will check the condition first.

• If the condition will be true then it will execute
the statements given in the loop, after once
complete the loop, it will again and again check
the condition if condition will false then it will
auto exit for the loop.

 Syntax :

 while(test condition)

 {

 statements;

 }

 Example :

 int a=10;

 while(a>=1)

 {

 Syatem.out.println(“A is:”+a);

 a=a+1; }

2) Iteration Statements :

2) For loop:

• To provide a looping while condition will be
true we can use for loop.

 Syntax :

 for(initialization; condition; increment or

 decrement)

 {

 statements;

 }

 initialization : Initialize the value of

 variable.

 test Condition : Test condition at here.

 Increment/decrement: To increase or

 decrease the value.

 Example :

 int a=1;

 for($a=1;$a<=10;$a++)

 System.out.println(“A is”+a);

2) Iteration Statements :

3) Do-while loop:

• Do…while loop will check the condition after
execution of statements provided in to loop.

• If the condition will be true then it will again
execute the statements given in the loop, if
condition will false then it will auto exit for the
loop.

 Syntax : do

 {

 statements;

 } while(test condition);

 Example :

 int a=10;

 do

 {

 System.out.println(“A is:”+a);

 a=a+1;

 }

 while(a<10);

3) Jump Statements :

1) Break:

• The break command will break the loop.

 Syntax :

 break;

 Example :

 for(int i=1;i<=10;i++)

 { if(i==5)

 break;

 System.out.println(“Num. is “+i);

 }

3) Jump Statements :

2) Continue:

• The continue command will break the

current loop and continue with the next loop.

 Syntax :

 continue;

 Example :

 for(int i=1;i<=10;i++)

 { if(i==5)

 continue;

 System.out.println(“Num. is “+i); }

3) Jump Statements :

3) Return:

• The return statement cause the control to be

transferred back from a method to the caller of

the method.

Syntax :

 return;

Example :

 int i=1

 While(i<10)

 { if(i==3)

 return;

 System.out.println(“i is “+i);

Points of learning :

Classes

Objects

 New Keyword

 Adding Methods to class

 Constructors

 Use of this keyword

Access Protection

Points of learning :

Nested class and inner class

 Garbage collection and finalize() method

 Command-line arguments

The General Form of a class

• A class is a template from which objects are created.

That is objects are instance of a class.

• When you create a class, you are creating a new data-

type. You can use this type to declare objects of that

type.

• Class defines structure and behavior (data & code) that

will be shared by a set of objects

• A class is declared by use of the class keyword. Classes

may contain data and code both.

class ClassName

 {

 type variable2;

 type variable2;

 type methodname1 (parameter list)

 {

 body of method;

 }

 type methodname2 (parameter list)

 {

 body of method;

 } }

Syntax of Class

class Box

{

 double width;

 double height;

 double depth;

}

class BoxDemo

{

 public static void main (String args[])

 {

 Box mybox = new Box ();

Simple Example of Class

 double vol;

 mybox.width =10;

 mybox.height = 20;

 mybox.depth = 30;

 vol = mybox.width * mybox.height *

 mybox.depth;

 System.out.println (“Volume is: - “+vol);

 }

}

Simple Example of Class

• Here, the class Box has three instance variable. So after

creating its object we can access these variables. The

objects of class is declared by the statement :

• Declaring Object :-

• Box b1=new Box(); // this is a combination of two

statements

• Box mybox; // declare ref. to object which

 contains null value.

• mybox = new Box (); // allocate a Box object.

Creating Objects

• Here, the new keyword is used to allocate memory

equal to the size of instance variables of class

Banking. Before using new keyword the object can

not be used.

• The new keyword allocates memory dynamically-at

run-time to objects. So you can create as many

objects as you want.

• You can assign a reference to object :

– Banking b1=new Banking();

– Banking ref=b1;

New Keyword

• So far we added instance variables to class, now we will

see how to add methods to a class. Main strength of a

class is in its methods.

• Following example adds a method of banking class

 (adding method to Banking class) :

Class Banking {

 double p,r;

 int r;

 void simpleIntrest()

 { double si;

Adding Methods to class

 Si=p*r*n/100;

 System.out.println(“Simple Intrest is:”+si);

 }

 }

 class simpleclass2 {

 public static void main(string args[]) {

 Banking b1=new Banking();

 b1.p=5000;

 b1.r=12;

 b1.n=5;

Example of Adding Methods to class

 b1.simpleIntrest(); // calling method on object b1

 Banking b2=new Banking();

 b2.p=10000;

 b2.r=10;

 b2.n=4;

 b2.simpleIntrest() ; // calling method on object b2

 }

}

Example of Adding Methods to class

• The constructor is a special method which has the

same name as its class. It initializes the objects of its

class automatically at the time of creation.

• One important point about constructor is that they

return type. Not even void. This is because they

actually return the object of its class.

• When we create an object, we call the constructor

after new keyword.

Constructors

• // adding constructor to Banking class

Class Banking {

 double p,r;

 int n;

 Banking() {

 System.out.println(“Executing constructor”);

 p=10000;

 r=12;

 n=5;

 }

Example of Constructors

 double simpleIntrest()

 { return(p*r*n/100);

 class constructorEx {

 public static void main(String args[])

 {

 Banking b1=new Banking(); // calling constructor

 double si=b1.simpleIntrest(); // method on b1

 System.out.println(“Simple intrest of b1 is”+si);

 Banking b2=new Banking();

 System.out.println(“Simple intrest of b2

is:”b2.simpleIntrest()); } }

Example of Constructors

• In a class you can specify which member of your

class can be accessed by other veriables.

• To do this, java provides three access specifier,

public,private and protected.

• 1) Public : When a member is defined by public

specifier, it can be accessed from anywhere.

• Public keyword is used to declare a member as

public.

Access Protection

• 2) Protected : This specifier is used in inheritance only.

The protected members can be accessed by the

members of other package, but only to the subclass of

this class.

• 3) Private : A member modified as private can be

accessed only by the members of its class. Private

keyword is used to declare a member as private.

• 4) Default : When you do not specify any access

specifier, the default specifier is applied to that member.

Access Protection

Class simple

{

 int i;

 public int j; // Public access

 private int k; // specify Private access

}

Example of Access Protection

• When you create an object using new operator, the

memory is allocated dynamically to the object. So if

we create more than one object, memory is allocated

to those objects.

• If object goes out-of scope, then memory should be

deallocated to that object.

• The process of deallocating memory for objects is

known as garbage collection.

Garbage Collection and finalize() method

• Sometimes you will need to do some actions when an

objects is destroyed by garbage collection.

• For example when your program is using non-java

resources, you have to free the memory for these

resources. This process is known as finalization.

Protected void finalize()

{ // statements to be executed when finalization occurs...

}

Finalize() method

• You can pass arguments to the main(). This can done at

run-time. As we know that the main() takes array of

String as argument.

• For example : // passing arguments to main()...

Class cmdline {

 public static void main(String arg[]) {

 for(int i=0;i<arg.length;i++)

 System.out.println(“Argument”+i+”:”+arg[i]);

} }

Command-line arguments

